Projects

Active Learning for Machine-learned potentials

Developed an Active Learning Framework to Accelerate Atomic Simulations

Twitter Bot Detection

Developed and tested different machine learning approaches to detect twitter bots

Predicting Adsorbate Binding Energies

Developed a workflow to generate atomic structures and predict adsorbate energy

ORNL Internship

Worked on accelerating Atomic Simulations

Environmental Protection Agency

Worked on Data Driven methods for Computational Toxicology

Q-wall Game

Using Deep Q-Learning to play games

Sorting Algorithm Visualizer

A React App which visualizes popular sorting algorithms

Recipy_maker

A Django App [WIP]

My cat

Placeholder Template

Publications

  1. https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00367
    Grace Patlewicz, Antony J. Williams, Matthew Adams, Imran Shah, and Katie Paul-Friedman. A cheminformatics workflow to select representative tsca chemicals for new approach methodology (nam) screening. Chemical Research in Toxicology, 38(1):129–144, 2025. PMID: 39655894.
  2. https://www.sciencedirect.com/science/article/pii/S2468111322000445
    Matthew Adams, Hannah Hidle, Daniel Chang, Ann M. Richard, Antony J. Williams, Imran Shah, and Grace Patlewicz. Development of a csrml version of the analog identification methodology (aim) fragments and their evaluation within the generalised read-across (genra) approach. Computational Toxicology, 25:100256, 2023
  3. https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00403
    Ann M. Richard, Ryan Lougee, Matthew Adams, Hannah Hidle, Chihae Yang, James Rathman, Tomasz Magdziarz, Bruno Bienfait, Antony J. Williams, and Grace Patlewicz. A new csrml structure-based fingerprint method for profiling and categorizing per- and polyfluoroalkyl substances (pfas). Chemical Research in Toxicology, 36(3):508–534, 2023
  4. https://joss.theoj.org/papers/10.21105/joss.05035
    Muhammed Shuaibi, Yuge Hu, Xiangyun Lei, Benjamin M. Comer, Matt Adams, Jacob Paras, Rui Qi Chen, Eric Musa, Joseph Musielewicz, Andrew A. Peterson, Andrew J. Medford, and Zachary Ulissi. Amptorch: A python package for scalable fingerprint-based neural network training on multi-element systems with integrated uncertainty quantification. Journal of Open Source Software, 8(87):5035, 2023

Contact